Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces
نویسندگان
چکیده
منابع مشابه
Dynamic defrosting on nanostructured superhydrophobic surfaces.
Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here, we report that nanostructured superhydrophobic surfa...
متن کاملJumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces.
When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the ratio...
متن کاملReversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces.
In this work, electrically controlled fully reversible wetting-dewetting transitions on superhydrophobic nanostructured surfaces have been demonstrated. Droplet behavior can be reversibly switched between the superhydrophobic Cassie-Baxter state and the hydrophilic Wenzel state by the application of electrical voltage and current. The nature of the reversibility mechanism was studied both exper...
متن کاملElectric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the v...
متن کاملDrop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures
Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Langmuir
سال: 2009
ISSN: 0743-7463,1520-5827
DOI: 10.1021/la900330q